Aplicaciones de la integral
La integración es un concepto fundamental del cálculo y del análisis matemático. Básicamente, una integral es una generalización de lasuma de infinitos sumandos, infinitamente pequeños.
El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o antiderivación, es muy común en la ingeniería y en la ciencia también; se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.
Fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y los aportes de Newton generaron el teorema fundamental del cálculo integral, que propone que la derivación y la integración son procesos inversos.
Terminología y notación
Si una función tiene una integral, se dice que es integrable. De la función de la cual se calcula la integral se dice que es el integrando. Se denomina dominio de integracióna la región sobre la cual se integra la función. Si la integral no tiene un dominio de integración, se considera indefinida (la que tiene dominio se considera definida). En general, el integrando puede ser una función de más de una variable, y el dominio de integración puede ser un área, un volumen, una región de dimensión superior, o incluso un espacio abstracto que no tiene estructura geométrica en ningún sentido usual.
El caso más sencillo, la integral de una función real f de una variable real x sobre el intervalo [a, b], se escribe
El signo ∫, una "S" alargada, representa la integración; a y b son el límite inferior y el límite superior de la integración y definen el dominio de integración; f es el integrando, que se tiene que evaluar al variar x sobre el intervalo [a,b]; y dx puede tener diferentes interpretaciones dependiendo de la teoría que se emplee. Por ejemplo, puede verse simplemente como una indicación de que x es la variable de integración, como una representación de los pasos en la suma de Riemann, una medida (en la integración de Lebesgue y sus extensiones), un infinitesimal (en análisis no estándar) o como una cantidad matemática independiente: una forma diferencial. Los casos más complicados pueden variar la notación ligeramente.
Cálculo de integrales
La técnica más básica para calcular integrales de una variable real se basa en el teorema fundamental del cálculo. Se procede de la siguiente forma:
- Se escoge una función f(x) y un intervalo [a, b].
- Se halla una antiderivada de f, es decir, una función F tal que F' = f.
- Se emplea el teorema fundamental del cálculo, suponiendo que ni el integrando ni la integral tienen singularidades en el camino de integración,
-
- Por tanto, el valor de la integral es F(b) − F(a).
Nótese que la integral no es realmente la antiderivada, sino que el teorema fundamental permite emplear las antiderivadas para evaluar las integrales definidas.
A menudo, el paso difícil de este proceso es el de encontrar una primitiva de f. En raras ocasiones es posible echar un vistazo a una función y escribir directamente su primitiva. Muy a menudo, es necesario emplear una de las muchas técnicas que se han desarrollado para evaluar integrales. La mayoría de ellas transforman una integral en otra que se espera que sea más manejable. Entre estas técnicas destacan:
- Integración por cambio de variable
- Integración por partes
- Integración por sustitución trigonométrica
- Integración de fracciones parciales
Incluso si estas técnicas fallan, aún puede ser posible evaluar una integral dada. La siguiente técnica más común es el cálculo del residuo, mientras que la serie de Taylor a veces se puede usar para hallar la primitiva de las integrales no elementales en lo que se conoce como el método de integración por series. También hay muchas formas menos habituales para calcular integrales definidas; por ejemplo, se puede emplear la identidad de Parseval para transformar una integral sobre una región rectangular en una suma infinita. En algunas ocasiones, se puede evaluar una integral empleando un truco; un ejemplo de este tipo se puede ver en la integral de Gauss.
Los cálculos de volúmenes de sólidos de revolución se pueden hacer normalmente con la integración por discos o la integración por capas.
Los resultados específicos que se han encontrado empleando las diferentes técnicas se recogen en la tabla de integrales.
Propiedades de la integración
Linealidad
- El conjunto de las funciones Riemann integrables en un intervalo cerrado [a, b] forman un espacio vectorial con las operaciones de suma (la función suma de otras dos es la función que a cada punto le hace corresponder la suma de las imágenes de este punto por cada una de las otras dos) y la multiplicación por un escalar. La operación integración
- es un funcional lineal de este espacio vectorial. Así, en primer lugar, el conjunto de funciones integrables es cerrado con la combinación lineal, y en segundo lugar, la integral de una combinación lineal es la combinación lineal de las integrales,
- De forma parecida, el conjunto de las funciones reales Lebesgue integrables en un espacio métrico E dado, con la medida μ es cerrado respecto de las combinaciones lineales y por lo tanto forman un espacio vectorial, y la integral de Lebesgue
- es un funcional lineal de este espacio vectorial, de forma que
- De forma más general, si se toma el espacio vectorial de todas las funciones medibles sobre un espacio métrico (E,μ), que toman valores en un espacio vectorial topológicocompleto localmente compacto V sobre un campo topológico localmente compacto K, f : E → V. Entonces se puede definir una aplicación integración abstracta que a cada función f le asigna un elemento de V o el símbolo ∞,
-
-
- que es compatible con las combinaciones lineales. En esta situación, la linealidad se sostiene para el subespacio de las funciones, cuya integral es un elemento de V (es decir, las integrales "finitas"). Los casos más importantes surgen cuando K es R, C, o una extensión finita del campo Qp de números p-ádicos, y V es un espacio vectorial de dimensión finita sobre K, y cuando K=C y V es un espacio de Hilbert complejo.
- La linealidad, junto con algunas propiedad naturales de continuidad y la normalización para ciertas clases de funciones "simples", se pueden usar para dar una definición alternativa de integral. Este es el enfoque de Daniell para el caso de funciones reales en un conjunto X, generalizado por Bourbaki a funciones que toman valores en un espacio vectorial topológicamente compacto. Véase Hildebrandt (1953) para una caracterización axiomática de la integral.
- Convenciones
- En esta sección f es una función real Riemann integrable. La integral
-
- sobre un intervalo [a, b] está definida si a < b. Esto significa que los sumatorios superiores e inferiores de la función f se evalúan sobre una partición a = x0 ≤ x1 ≤ . . . ≤ xn = bcuyos valores xi son crecientes. Geométricamente significa que la integración tiene lugar "de izquierda a derecha", evaluando f dentro de intervalos [x i , x i +1] donde el intervalo con un índice más grande queda a la derecha del intervalo con un índice más pequeño. Los valores a y b, los puntos extremos del intervalo, se denominan límites de integraciónde f. Las integrales también se pueden definir si a > b:
- Inversión de los límites de integración. si a > b entonces se define
-
-
- Ello, con a = b, implica:
- Integrales sobre intervalos de longitud cero. si a es un número real entonces
-
-
-
- La primera convención es necesaria al calcular integrales sobre subintervalos de [a, b]; la segunda dice que una integral sobre un intervalo degenerado, o un punto, tiene que ser cero. Un motivo para la primera convención es que la integrabilidad de f sobre un intervalo [a, b] implica que f es integrable sobre cualquier subintervalo [c, d], pero en particular las integrales tienen la propiedad de que:
- Aditividad de la integración sobre intervalos. si c es cualquier elemento de [a, b], entonces
-
-
-
- Con la primera convención la relación resultante
-
-
- queda bien definida para cualquier permutación cíclica de a, b, y c.
- En lugar de ver lo anterior como convenciones, también se puede adoptar el punto de vista de que la integración se hace sólo sobre variedades orientadas. Si M es una tal formam-dimensional orientada, y M' es la misma forma con orientación opuesta y ω es una m-forma, entonces se tiene (véase más abajo la integración de formas diferenciales):
-
-
Integrales impropias
-
Una integral de Riemann "propia" supone que el integrando está definido y es finito en un intervalo cerrado y acotado, cuyos extremos son los límites de integración. Una integral impropia aparece cuando una o más de estas condiciones no se satisface. En algunos casos, estas integrales se pueden definir tomando el límite de una sucesión de integrales de Riemann propias sobre intervalos sucesivamente más largos.
Si el intervalo no es acotado, por ejemplo en su extremo superior, entonces la integral impropia es el límite cuando el punto final tiende a infinito.
Si el integrando sólo está definido en un intervalo finito semiabierto, por ejemplo (a,b], entonces, otra vez el límite puede suministrar un resultado finito.
Esto es, la integral impropia es el límite de integrales propias cuando uno de los puntos extremos del intervalo de integración se aproxima, ya sea a un número real especificado, o ∞, o −∞. En casos más complicados, hacen falta límites en los dos puntos extremos o en puntos interiores.
Por ejemplo, la función
integrada desde 0 a ∞ (imagen de la derecha). En el extremo inferior, a medida que x se acerca a 0 la función tiende a ∞, y el extremo superior es él mismo ∞, a pesar de que la función tiende a 0. Así, esta es una integral doblemente impropia. Integrada, por ejemplo, desde 1 hasta 3, con un sumatorio de Riemann es suficiente para obtener un resultado de
. Para integrar desde 1 hasta ∞, un sumatorio de Riemann no es posible. Ahora bien, cualquier límite superior finito, por ejemplo t (con t > 1), da un resultado bien definido,
. Este resultado tiene un límite finito cuando t tiende a infinito, que es
. De forma parecida, la integral desde 1⁄3 hasta a 1 admite también un sumatorio de Riemann, que por casualidad da de nuevo
. Sustituyendo 1⁄3 por un valor positivo arbitrario s(con s < 1) resulta igualmente un resultado definido y da
. Éste, también tiene un límite finito cuando s tiende a cero, que es
. Combinando los límites de los dos fragmentos, el resultado de esta integral impropia es
Este proceso no tiene el éxito garantizado; un límite puede no existir, o puede ser infinito. Por ejemplo, sobre el intervalo cerrado de 0 a 1 la integral de
no converge; y sobre el intervalo abierto del 1 a ∞ la integral de
no converge.También puede pasar que un integrando no esté acotado en un punto interior, en este caso la integral se ha de partir en este punto, y el límite de las integrales de los dos lados han de existir y han de ser acotados. Así
-
-
A la integral similar
no se le puede asignar un valor de esta forma, dado que las integrales por encima y por debajo de cero no convergen independientemente (en cambio, véase valor principal de Cauchy.)
-
-
Integración múltiple
-
Las integrales se pueden calcular sobre regiones diferentes de los intervalos. En general, una integral sobre un conjunto E de una funciónf se escribe:
Aquí x no hace falta que sea necesariamente un número real, sino que puede ser cualquier otra cantidad apropiada, por ejemplo, unvector de R3. El teorema de Fubini demuestra que estas integrales pueden reescribirse como una integral iterada. En otras palabras, la integral se puede calcular a base de integrar las coordenadas una por una.
De la misma manera que la integral definida de una función positiva representa el área de la región encerrada entre la gráfica de la función y el eje x, la integral doble de una función positiva de dos variables representa el volumen de la región comprendida entre la superficie definida por la función y el plano que contiene su dominio. (El mismo volumen puede obtenerse a través de una integral triple— la integral de la función de tres variables — de la función constante f(x, y, z) = 1 sobre la región mencionada antes entre la superficie y el plano, lo mismo se puede hacer con una integral doble para calcular una superficie.) Si el número de variables es mayor, entonces la integral representa un hipervolumen, el volumen de un sólido de más de tres dimensiones que no se puede representar gráficamente.
Por ejemplo, el volumen del paralelepípedo de caras 4 × 6 × 5 se puede obtener de dos maneras:
- Con la integral doble
-
-
- de la función f(x, y) = 5 calculada en la región D del plano xy que es la base del paralelepípedo.
- Con la integral triple
-
-
- de la función constante 1 calculada sobre el mismo paralelepípedo (a pesar de que este segundo método también se puede interpretar como el hipervolumen de un hiperparalelepípedo de cuatro dimensiones que tiene como base el paralelepípedo en cuestión y una altura constante de 1, como la altura es 1 el volumen coincide con el área de la base).
- Puesto que es imposible calcular la antiderivada de una función de más de una variable, no existen las integrales múltiples indefinidas: tales integrales son todas definidas.
-
Integrales de línea
-
El concepto de integral se puede extender a dominios de integración más generales, tales como las líneas curvas y las superficies. Estas integrales se conocen como integrales de línea e integrales de superficie respectivamente. Tienen importantes aplicaciones en la física cuando se trata con campos vectoriales.
Una integral de línea es una integral donde la función a integrar es evaluada a lo largo de una curva. Se utilizan varias integrales curvilíneas diferentes. En el caso de una curva cerrada también se la denomina integral de contorno.
La función a integrar puede ser un campo escalar o un campo vectorial. El valor de la integral curvilínea es la suma de los valores del campo en los puntos de la línea, ponderados por alguna función escalar de la curva (habitualmente la longitud del arco o, en el caso de un campo vectorial, el producto escalar del campo vectorial por un vector diferencial de la curva). Esta ponderación distingue las integrales curvilíneas de las integrales más sencillas definidas sobre intervalos.
Muchas fórmulas sencillas de la física tienen de forma natural análogas continuas en términos de integrales de línea; por ejemplo, el hecho de que el trabajo sea igual a la fuerza multiplicada por la distancia se puede expresar (en términos de cantidades vectoriales) como:
que tiene su paralelismo en la integral de línea
que acumula los componentes vectoriales a lo largo de un camino continuo, y así calcula el trabajo realizado por un objeto al moverse a través de un campo, como por ejemplo un campo eléctrico o un campo gravitatorio.
-
-
Integrales de superficie
-
Una integral de superficie es una integral definida calculada sobre una superficie (que puede ser un conjunto curvado en el espacio; se puede entender como la integral doble análoga a la integral de línea. La función a integrar puede ser un campo escalar o un campo vectorial. El valor de la integral de superficie es la suma ponderada de los valores del campo en todos los puntos de la superficie. Esto se puede conseguir a base de dividir la superficie en elementos de superficie, los cuales proporcionan la partición para los sumatorios de Riemann.
Como ejemplo de las aplicaciones de las integrales de superficie, se puede considerar un campo vectorial v sobre una superficie S; es decir, para cada punto x de S, v(x) es un vector. Imagínese que se tiene un fluido fluyendo a través de S, de forma que v(x) determina la velocidad del fluido en el punto x. El caudal se define como la cantidad de fluido que fluye a través de S en la unidad de tiempo. Para hallar el caudal, hay que calcular el producto escalar de v por el vector unitario normal a la superficie S en cada punto, lo que nos dará un campo escalar, que integramos sobre la superficie:
-
.
El caudal de fluido de este ejemplo puede ser de un fluido físico como el agua o el aire, o de un flujo eléctrico o magnético. Así, las integrales de superficie tienen aplicaciones en la física, en particular en la teoría clásica del electromagnetismo.
-
-
Valor medio de una función
-
Para calcular el valor medio m de una función f en un intervalo [a,b] se usa la siguiente fórmula:
Nótese que, si la función f es una función escalonada con escalones de igual anchura, esta definición coincide con la media aritmética de los valores de la función. Si los escalones tienen anchuras diferentes, entonces coincide con la media aritmética ponderada donde el valor de la función en cada escalón se pondera con la anchura del escalón. Por lo tanto, esta definición se puede entender como la extensión natural de la media.
-
-